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1
Introduction

1.1
This document sets down the principles of and the requirements on the evaluation of the uncertainty of measurement in calibration and the statement of this uncertainty in calibration certificates. The treatment is kept on a general level to suit all fields of calibration. The method outlined may have to be supplemented by more specific advice for different fields, to make the information more readily applicable. In developing such supplementary guidelines the general principles stated in this document should be followed to ensure harmonisation between the different fields.

1.2
The treatment in this document is in accordance with the Guide to the Expression of Uncertainty in Measurement, first published in 1993 in the name of BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML [ref. 1]. But whereas [ref. 1] establishes general rules for evaluating and expressing uncertainty in measurement that can be followed in most fields of physical measurements, this document concentrates on the method most suitable for the measurements in calibration laboratories and describes an unambiguous and harmonised way of evaluating and stating the uncertainty of measurement. It comprises the following subjects: 

· definitions basic to the document;

· methods for evaluating the uncertainty of measurement of input quantities;

· relationship between the uncertainty of measurement of the output quantity and the uncertainty of measurement of the input quantities;
· expanded uncertainty of measurement of the output quantity;
· statement of the uncertainty of measurement;
· a step by step procedure for calculating the uncertainty of measurement.
Worked out examples showing the application of the method outlined here to specific measurement problems in different fields will be given in supplements. Evaluation of uncertainty of measurement is also addressed in several of the EAL documents which provide guidance on calibration methods, some of these documents containing specific worked out examples. 

1.3
Within EAL the best measurement capability (always referring to a particular quantity, viz. the measurand) is defined as the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation, when performing more or less routine calibrations of nearly ideal measurement standards intended to define, realize, conserve or reproduce a unit of that quantity or one or more of its values, or when performing more or less routine calibrations of nearly ideal measuring instruments designed for the measurement of that quantity. The assessment of best measurement capability of accredited calibration laboratories has to be based on the method described in this document but shall normally be supported or confirmed by experimental evidence. To assist accreditation bodies with the assessment of the best measurement capability some further explanations are given in Annex A. 

2
Outline and definitions

Note:
Terms of special relevance to the context of the main text are written in bold when they appear for the first time in this document. Appendix B contains a glossary of these terms together with references 

2.1
The statement of the result of a measurement is complete only if it contains both the value attributed to the measurand and the uncertainty of measurement associated with that value. In this document all quantities which are not exactly known are treated as random variables, including the influence quantities which may affect the measured value. 

2.2
The uncertainty of measurement is a parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand [ref. 2]. In this document the shorthand term uncertainty is used for uncertainty of measurement if there is no risk of misunderstanding. For typical sources of uncertainty in a measurement see the list given in Annex C. 

2.3
The measurands are the particular quantities subject to measurement. In calibration one usually deals with only one measurand or output quantity Y that depends upon a number of input quantities Xi (i = 1, 2 ,…, N)  according to the functional relationship

Y = f(X1, X2, …, XN )
(2.1) 

The model function f represents the procedure of the measurement and the method of evaluation. It describes how values of the output quantity Y are obtained from values of the input quantities Xi. In most cases it will be an analytical expression, but it may also be a group of such expressions which include corrections and correction factors for systematic effects, thereby leading to a more complicated relationship that is not written down as one function explicitly. Further, f may be determined experimentally, or exist only as a computer algorithm that must be evaluated numerically, or it may be a combination of all of these. 

2.4
The set of input quantities Xi may be grouped into two categories according to the way in which the value of the quantity and its associated uncertainty have been determined: 

(a)
quantities whose estimate and associated uncertainty are directly determined in the current measurement. These values may be obtained, for example, from a single observation, repeated observations, or judgement based on experience. They may involve the determination of corrections to instrument readings as well as corrections for influence quantities, such as ambient temperature, barometric pressure or humidity; 

(b)
quantities whose estimate and associated uncertainty are brought into the measurement from external sources, such as quantities associated with calibrated measurement standards, certified reference materials or reference data obtained from handbooks. 

2.5
An estimate of the measurand Y, the output estimate denoted by y, is obtained from equation (2.1) using input estimates xi for the values of the input quantities Xi



(2.2) 

It is understood that the input values are best estimates that have been corrected for all effects significant for the model. If not, the necessary corrections have been introduced as separate input quantities. 

2.6
For a random variable the variance of its distribution or the positive square root of the variance, called standard deviation, is used as a measure of the dispersion of values. The standard uncertainty of measurement associated with the output estimate or measurement result y, denoted by u(y), is the standard deviation of the measurand Y. It is to be determined from the estimates xi of the input quantities Xi and their associated standard uncertainties u(xi). The standard uncertainty associated with an estimate has the same dimension as the estimate. In some cases the relative standard uncertainty of measurement may be appropriate which is the standard uncertainty of measurement associated with an estimate divided by the modulus of that estimate and is therefore dimensionless. This concept cannot be used if the estimate equals zero. 

3
Evaluation of uncertainty of measurement 
of input estimates

3.1
General considerations
3.1.1
The uncertainty of measurement associated with the input estimates is evaluated according to either a 'Type A' or a 'Type B' method of evaluation. The Type A evaluation of standard uncertainty is the method of evaluating the uncertainty by the statistical analysis of a series of observations. In this case the standard uncertainty is the experimental standard deviation of the mean that follows from an averaging procedure or an appropriate regression analysis. The Type B evaluation of standard uncertainty is the method of evaluating the uncertainty by means other than the statistical analysis of a series of observations. In this case the evaluation of the standard uncertainty is based on some other scientific knowledge. 

Note:
There are occasions, seldom met in calibration, when all possible values of a quantity lie on one side of a single limit value. A well known case is the so-called cosine error. For the treatment of such special cases, see ref. 1.

3.2
Type A evaluation of standard uncertainty

3.2.1
The Type A evaluation of standard uncertainty can be applied when several independent observations have been made for one of the input quantities under the same conditions of measurement. If there is sufficient resolution in the measurement process there will be an observable scatter or spread in the values obtained. 

3.2.2
Assume that the repeatedly measured input quantity Xi is the quantity Q. With n statistically independent observations (n > 1), the estimate of the quantity Q is 

, the arithmetic mean or the average of the individual observed values qj 
(j = 1, 2, …, n)




(3.1) 

The uncertainty of measurement associated with the estimate 

 is evaluated according to one of the following methods:

(a)
An estimate of the variance of the underlying probability distribution is the experimental variance s²(q) of values qj that is given by




(3.2) 

Its (positive) square root is termed experimental standard deviation. The best estimate of the variance of the arithmetic mean 

 is the experimental variance of the mean given by




(3.3) 

Its (positive) square root is termed experimental standard deviation of the mean. The standard uncertainty 

 associated with the input estimate 

 is the experimental standard deviation of the mean




(3.4) 

Warning: Generally, when the number n of repeated measurements is low (n < 10), the reliability of a Type A evaluation of standard uncertainty, as expressed by equation (3.4), has to be considered. If the number of observations cannot be increased, other means of evaluating the standard uncertainty given in the text have to be considered. 

(b)
For a measurement that is well-characterised and under statistical control a combined or pooled estimate of variance 

 may be available that characterises the dispersion better than the estimated standard deviation obtained from a limited number of observations. If in such a case the value of the input quantity Q is determined as the arithmetic mean 

 of a small number  n of independent observations, the variance of the mean may be estimated by




(3.5) 

The standard uncertainty is deduced from this value by equation (3.4). 

3.3
Type B evaluation of standard uncertainty

3.3.1
The Type B evaluation of standard uncertainty is the evaluation of the uncertainty associated with an estimate xi of an input quantity Xi by means other than the statistical analysis of a series of observations. The standard uncertainty u(xi) is evaluated by scientific judgement based on all available information on the possible variability of Xi. Values belonging to this category may be derived from

· previous measurement data; 

· experience with or general knowledge of the behaviour and properties of relevant materials and instruments;

· manufacturer’s specifications;

· data provided in calibration and other certificates;

· uncertainties assigned to reference data taken from handbooks.

3.3.2
The proper use of the available information for a Type B evaluation of standard uncertainty of measurement calls for insight based on experience and general knowledge. It is a skill that can be learned with practice. A well-based Type B evaluation of standard uncertainty can be as reliable as a Type A evaluation of standard uncertainty, especially in a measurement situation where a Type A evaluation is based only on a comparatively small number of statistically independent observations. The following cases must be discerned:

(a)
When only a single value is known for the quantity Xi, e.g. a single measured value, a resultant value of a previous measurement, a reference value from the literature, or a correction value, this value will be used for xi. The standard uncertainty u(xi) associated with xi is to be adopted where it is given. Otherwise it has to be calculated from unequivocal uncertainty data. If data of this kind are not available, the uncertainty has to be evaluated on the basis of experience. 

(b)
When a probability distribution can be assumed for the quantity Xi, based on theory or experience, then the appropriate expectation or expected value and the square root of the variance of this distribution have to be taken as the estimate xi and the associated standard uncertainty u(xi), respectively. 

(c)
If only upper and lower limits a+ and a– can be estimated for the value of the quantity Xi (e.g. manufacturer’s specifications of a measuring instrument, a temperature range, a rounding or truncation error resulting from automated data reduction), a probability distribution with constant probability density between these limits (rectangular probability distribution) has to be assumed for the possible variability of the input quantity Xi. According to case (b) above this leads to



(3.6) 

for the estimated value and




(3.7) 

for the square of the standard uncertainty. If the difference between the limiting values is denoted by 2a, equation (3.7) yields




(3.8) 

The rectangular distribution is a reasonable description in probability terms of one’s inadequate knowledge about the input quantity Xi in the absence of any other information than its limits of variability. But if it is known that values of the quantity in question near the centre of the variability interval are more likely than values close to the limits, a triangular or normal distribution may be a better model. On the other hand, if values close to the limits are more likely than values near the centre, a U-shaped distribution may be more appropriate. 

4
Calculation of the standard uncertainty of the output estimate

4.1
For uncorrelated input quantities the square of the standard uncertainty associated with the output estimate y is given by




(4.1) 

Note:
There are cases, seldom occurring in calibration, where the model function is strongly non-linear or some of the sensitivity coefficients [see equation (4.2) and (4.3)] vanish and higher order terms have to be included into equation (4.1). For a treatment of such special cases see ref. 1.
The quantity ui(y) (i = 1, 2, …, N) is the contribution to the standard uncertainty associated with the output estimate y resulting from the standard uncertainty associated with the input estimate xi
ui(y) = ciu(xi)
(4.2) 

where ci is the sensitivity coefficient associated with the input estimate xi, i.e. the partial derivative of the model function f with respect to Xi, evaluated at the input estimates xi,




(4.3) 

4.2
The sensitivity coefficient ci describes the extent to which the output estimate y is influenced by variations of the input estimate xi. It can be evaluated from the model function f by equation (4.3) or by using numerical methods, i.e. by calculating the change in the output estimate y due to a change in the input estimate xi of +u(xi) and -u(xi) and taking as the value of ci the resulting difference in y divided by 2u(xi). Sometimes it may be more appropriate to find the change in the output estimate y from an experiment by repeating the measurement at e.g. xi ( u(xi).

4.3
Whereas u(xi) is always positive, the contribution ui(y) according to equation (4.2) is either positive or negative, depending on the sign of the sensitivity coefficient ci. The sign of ui(y) has to be taken into account in the case of correlated input quantities, see equation (D4) of Annex D. 

4.4
If the model function f is a sum or difference of the input quantities Xi



(4.4) 

the output estimate according to equation (2.2) is given by the corresponding sum or difference of the input estimates




(4.5) 

whereas the sensitivity coefficients equal pi and equation (4.1) converts to



(4.6) 

4.5
If the model function f is a product or quotient of the input quantities Xi



(4.7) 

the output estimate again is the corresponding product or quotient of the input estimates




(4.8) 

The sensitivity coefficients equal piy/xi in this case and an expression analogous to equation (4.6) is obtained from equation (4.1), if relative standard uncertainties w(y) = u(y)/(y( and w(xi) = u(xi)/(xi( are used, 




(4.9) 

4.6
If two input quantities Xi and Xk are correlated to some degree, i.e. if they are mutually dependent in one way or another, their covariance also has to be considered as a contribution to the uncertainty. See Annex D for how this has to be done. The ability to take into account the effect of correlations depends on the knowledge of the measurement process and on the judgement of mutual dependency of the input quantities. In general, it should be kept in mind that neglecting correlations between input quantities can lead to an incorrect evaluation of the standard uncertainty of the measurand. 

4.7
The covariance associated with the estimates of two input quantities Xi and Xk may be taken to be zero or treated as insignificant if

(a)
the input quantities Xi and Xk are independent, for example, because they have been repeatedly but not simultaneously observed in different independent experiments or because they represent resultant quantities of different evaluations that have been made independently, or if

(b)
either of the input quantities Xi and Xk can be treated as constant, or if

(c)
investigation gives no information indicating the presence of correlation between the input quantities Xi and Xk.

Sometimes correlations can be eliminated by a proper choice of the model function. 

4.8
The uncertainty analysis for a measurement — sometimes called the uncertainty budget of the measurement — should include a list of all sources of uncertainty together with the associated standard uncertainties of measurement and the methods of evaluating them. For repeated measurements the number n of observations also has to be stated. For the sake of clarity, it is recommended to present the data relevant to this analysis in the form of a table. In this table all quantities should be referenced by a physical symbol Xi or a short identifier. For each of them at least the estimate xi, the associated standard uncertainty of measurement u(xi), the sensitivity coefficient ci and the different uncertainty contributions ui(y) should be specified. The dimension of each of the quantities should also be stated with the numerical values given in the table. 

4.9
A formal example of such an arrangement is given as Table 4.1 applicable for the case of uncorrelated input quantities. The standard uncertainty associated with the measurement result u(y) given in the bottom right corner of the table is the root sum square of all the uncertainty contributions in the outer right column. The grey part of the table is not filled in.

Table 4.1: Schematic of an ordered arrangement of the quantities, estimates, standard uncertainties, sensitivity coefficients and uncertainty contributions used in the uncertainty analysis of a measurement.
Quantity

Xi
Estimate

xi
Standard uncertainty
u(xi)
Sensitivity coefficient 
ci
Contribution to the standard uncertainty
ui(y)

X1
x1
u(x1)
c1
u1(y)

X2
x2
u(x2)
c2
u2(y)

:
:
:
:
:

XN
xN
u(xN)
cN
uN(y)

Y
y


u(y)

5
Expanded uncertainty of measurement

5.1
Within EAL it has been decided that calibration laboratories accredited by members of the EAL shall state an expanded uncertainty of measurement U, obtained by multiplying the standard uncertainty u(y) of the output estimate y by a coverage factor k,
U = ku(y)
(5.1) 

In cases where a normal (Gaussian) distribution can be attributed to the measurand and the standard uncertainty associated with the output estimate has sufficient reliability, the standard coverage factor k = 2 shall be used. The assigned expanded uncertainty corresponds to a coverage probability of approximately 95%. These conditions are fulfilled in the majority of cases encountered in calibration work. 

5.2
The assumption of a normal distribution cannot always be easily confirmed experimentally. However, in the cases where several (i.e. N ( 3) uncertainty components, derived from well-behaved probability distributions of independent quantities, e.g. normal distributions or rectangular distributions, contribute to the standard uncertainty associated with the output estimate by comparable amounts, the conditions of the Central Limit Theorem are met and it can be assumed to a high degree of approximation that the distribution of the output quantity is normal. 

5.3
The reliability of the standard uncertainty assigned to the output estimate is determined by its effective degrees of freedom (see Annex E). However, the reliability criterion is always met if none of the uncertainty contributions is obtained from a Type A evaluation based on less than ten repeated observations. 

5.4
If one of these conditions (normality or sufficient reliability) is not fulfilled, the standard coverage factor k = 2 can yield an expanded uncertainty corresponding to a coverage probability of less than 95%. In these cases, in order to ensure that a value of the expanded uncertainty is quoted corresponding to the same coverage probability as in the normal case, other procedures have to be followed. The use of approximately the same coverage probability is essential whenever two results of measurement of the same quantity have to be compared, e.g. when evaluating the results of an inter-laboratory comparison or assessing compliance with a specification. 

5.5
Even if a normal distribution can be assumed, it may still occur that the standard uncertainty associated with the output estimate is of insufficient reliability. If, in this case, it is not expedient to increase the number n of repeated measurements or to use a Type B evaluation instead of the Type A evaluation of poor reliability, the method given in Annex E should be used. 

5.5
For the remaining cases, i.e. all cases where the assumption of a normal distribution cannot be justified, information on the actual probability distribution of the output estimate must be used to obtain a value of the coverage factor k that corresponds to a coverage probability of approximately 95%.

6
Statement of uncertainty of measurement in calibration certificates

6.1
In calibration certificates the complete result of the measurement consisting of the estimate y of the measurand and the associated expanded uncertainty U shall be given in the form (y ( U). To this an explanatory note must be added which in the general case should have the following content: 

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EAL Publication EAL-R2. 

6.2
However, in cases where the procedure of Annex E has been followed, the additional note should read as follows: 

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = XX, which for a t-distribution with (eff = YY effective degrees of freedom corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EAL Publication EAL-R2. 

6.3
The numerical value of the uncertainty of measurement should be given to at most two significant figures. The numerical value of the measurement result should in the final statement normally be rounded to the least significant figure in the value of the expanded uncertainty assigned to the measurement result. For the process of rounding, the usual rules for rounding of numbers have to be used (for further details on rounding see ISO 31-0:1992, Annex B). However, if the rounding brings the numerical value of the uncertainty of measurement down by more than 5%, the rounded up value should be used. 

7
Step-by-step procedure for calculating the uncertainty of measurement

7.1
The following is a guide to the use of this document in practice (cf. worked examples in Annex F and in separate supplementary documents): 

(a)
Express in mathematical terms the dependence of the measurand (output quantity) Y on the input quantities Xi according to equation (2.1). In the case of a direct comparison of two standards the equation may be very simple, e.g. 
Y = X1+X2.

(b)
Identify and apply all significant corrections. 

(c)
List all sources of uncertainty in the form of an uncertainty analysis in accordance with Section 4. 

(d)
Calculate the standard uncertainty 

 for repeatedly measured quantities in accordance with sub-section 3.2. 

(e)
For single values, e.g. resultant values of previous measurements, correction values or values from the literature, adopt the standard uncertainty where it is given or can be calculated according to paragraph 3.3.2 (a). Pay attention to the uncertainty representation used. If no data are available from which the standard uncertainty can be derived, state a value of u(xi) on the basis of scientific experience. 

(f)
For input quantities for which the probability distribution is known or can be assumed, calculate the expectation and the standard uncertainty u(xi) according to paragraph 3.3.2 (b). If only upper and lower limits are given or can be estimated, calculate the standard uncertainty u(xi) in accordance with paragraph 3.3.2 (c). 

(g)
Calculate for each input quantity Xi the contribution ui(y) to the uncertainty associated with the output estimate resulting from the input estimate xi according to equations (4.2) and (4.3) and sum their squares as described in equation (4.1) to obtain the square of the standard uncertainty u(y) of the measurand. If input quantities are known to be correlated, apply the procedure given in Annex D. 

(h)
Calculate the expanded uncertainty U by multiplying the standard uncertainty u(y) associated with the output estimate by a coverage factor k chosen in accordance with Section 5. 

(i)
Report the result of the measurement comprising the estimate y of the measurand, the associated expanded uncertainty U and the coverage factor k in the calibration certificate in accordance with Section 6. 

8
References 

[1]
Guide to the Expression of Uncertainty in Measurement, first edition, 1993, corrected and reprinted 1995, International Organization for Standardization (Geneva, Switzerland). 

[2]
International Vocabulary of Basic and General Terms in Metrology, second edition, 1993, International Organization for Standardization (Geneva, Switzerland). 

[3]
International Standard ISO 3534-1, Statistics - Vocabulary and symbols - Part I: Probability and General Statistical Terms, first edition, 1993, International Organization for Standardization (Geneva, Switzerland). 

Appendix A

Comments on the assessment of best measurement capability
A1
Best measurement capability (see Section 1 of the main text) is one of the parameters that is used to define the scope of an accredited calibration laboratory, the others being physical quantity, calibration method or type of instrument to be calibrated and measurement range. Best measurement capability is normally stated in the accreditation schedule or in other documentation that supports either the decision on accreditation or the accreditation certificate which in many cases is issued as evidence of accreditation. Occasionally it is stated both in the accreditation schedule and in the supporting documents. Best measurement capability is one of the essential pieces of information to be found in directories of accredited laboratories that are regularly issued by accreditation bodies and is used by potential customers to accredited laboratories to judge the suitability of a laboratory to carry out particular calibration work at the laboratory or on site. 
A2
To make it possible to compare the capabilities of different calibration laboratories, in particular laboratories accredited by different accreditation bodies, the statement of best measurement capability needs to be harmonised. To facilitate this, some explanations are given below to the term best measurement capability, based on its definition as reported in the main text. 

A3
With 'more or less routine calibrations' is meant that the laboratory shall be able to achieve the stated capability in the normal work that it performs under its accreditation. Obviously there are instances where the laboratory would be able to do better as a result of extensive investigations and additional precautions but these cases are not covered by the definition of best measurement capability, unless it is the outspoken policy of the laboratory to perform such scientific investigations (in which case these become the 'more or less routine' type calibrations of the laboratory). 
A4
Inclusion of the qualifier 'nearly ideal' in the definition means that best measurement capability should not be dependent on the characteristics of the device to be calibrated. Inherent in the concept of being nearly ideal is thus that there should be no significant contribution to the uncertainty of measurement attributable to physical effects that can be ascribed to imperfections of the device to be calibrated. However, it should be understood that such a device should be available. If it is established that, in a particular case, even the most 'ideal' available device contributes to the uncertainty of measurement, this contribution shall be included in the determination of the best measurement capability and a statement should be made that the best measurement capability refers to calibration of that type of device. 
A5
The definition of best measurement capability implies that within its accreditation a laboratory is not entitled to claim a smaller uncertainty of measurement than the best measurement capability. This means that the laboratory shall be required to state a larger uncertainty than that corresponding to the best measurement capability whenever it is established that the actual calibration process adds significantly to the uncertainty of measurement. Typically the equipment under calibration may give a contribution. Obviously the actual uncertainty of measurement can never be smaller than the best measurement capability. When stating the actual uncertainty, the laboratory shall be asked to apply the principles of the present document. 
A6
It should be pointed out that according to the definition of best measurement capability the concept is applicable only to results for which the laboratory claims its status as accredited laboratory. Thus, strictly speaking the term is of an administrative character and does not necessarily need to reflect the real technical capability of the laboratory. It should be possible for a laboratory to apply for accreditation with a larger uncertainty of measurement than its technical capability if the laboratory has internal reasons for doing so. Such internal reasons usually involve cases where the real capability has to be held in confidence to external customers, e.g. when doing research and development work or when providing service to special customers. The policy of the accreditation body should be to grant accreditation on any applied level if the laboratory is capable of carrying out calibrations on that level. (This consideration refers not only to the best measurement capability but to all parameters that define the scope of a calibration laboratory.) 
A7
Assessment of best measurement capability is the task of the accreditation body. The estimation of the uncertainty of measurement that defines the best measurement capability should follow the procedure laid down in the present document, with the exception of the case covered in the previous sub-section. The best measurement capability shall be stated to the same level as required for calibration certificates, i.e. in the form of an expanded uncertainty of measurement, normally with coverage factor k = 2. (Only in those exceptional cases where the existence of a normal distribution cannot be assumed or the assessment is based on limited data, the best measurement capability has to be stated to a coverage probability of approximately 95%. See Section 5 of the main text.) 
A8
All components contributing significantly to the uncertainty of measurement shall be taken into account when evaluating the best measurement capability. The evaluation of the contributions that are known to vary with time or with any other physical quantity can be based on limits of possible variations assumed to occur under normal working conditions. For instance, if the used working standard is known to drift, the contribution caused by the drift between subsequent calibrations of the standard has to be taken into account when estimating the uncertainty contribution of the working standard. 
A9
In some fields the uncertainty of measurement may depend on some additional parameter, e.g. frequency of applied voltage when calibrating standard resistors. Such additional parameters shall be stated together with the physical quantity in question and the best measurement capability specified for the additional parameters. Often this can be done by giving the best measurement capability as a function of these parameters. 
A10
The best measurement capability should normally be stated numerically. Where the best measurement capability is a function of the quantity to which it refers (or any other parameter) it should be given in analytical form but in this case it may be illustrative to support the statement by a diagram. It should always be unequivocally clear whether the best measurement capability is given in absolute or relative terms. (Usually the inclusion of the relevant unit gives the necessary explanation but in case of dimensionless quantities a separate statement is needed.) 

A11
Although the assessment should be based on the procedures of this document, in the main text there is the requirement that the assessment normally shall be 'supported or confirmed by experimental evidence'. The meaning of this requirement is that the accreditation body should not rely on an evaluation of the uncertainty of measurement only. Interlaboratory comparisons that substantiate the evaluation have to be carried out under the supervision of the accreditation body or on its behalf. 

Appendix B

Glossary of some relevant terms

B1
arithmetic mean ([ref. 3] term 2.26)

The sum of values divided by the number of values


B2
best measurement capability (Section 1)

The smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation, when performing more or less routine calibrations of nearly ideal measurement standards intended to define, realise, conserve or reproduce a unit of that quantity or one or more of its values, or when performing more or less routine calibrations of nearly ideal measuring instruments designed for the measurement of that quantity. 

B3
correlation ([ref. 3] term 1.13)
The relationship between two or several random variables within a distribution of two or more random variables

B4
correlation coefficient (from [ref. 1] Section C.3.6)

The measure of the relative mutual dependence of two random variables, equal to the ratio of their covariance to the positive square root of the product of their variances

B5
covariance (from [ref. 1] Section C.3.4)

The measure of the mutual dependence of two random variables, equal to the expectation of the product of the deviations of two random variables from their respective expectations

B6
coverage factor ([ref. 1] term 2.3.6)

A numerical factor used as a multiplier of the standard uncertainty of measurement in order to obtain an expanded uncertainty of measurement

B7
coverage probability (from [ref. 1] term 2.3.5, NOTE 1)

The fraction, usually large, of the distribution of values that as a result of a measurement could reasonably be attributed to the measurand

B8
experimental standard deviation ([ref. 2] term 3.8)

The positive square root of the experimental variance.

B9
expanded uncertainty ([ref. 1] term 2.3.5)

A quantity defining an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand.

B10
experimental variance (from [ref. 1] Section 4.2.2)

The quantity characterising the dispersion of the results of a series of n observations of the same measurand given by equation (3.2) in the text.

B11
input estimate (from [ref. 1] Section 4.1.4)

The estimate of an input quantity used in the evaluation of the result of a measurement.

B12
input quantity (from [ref. 1] Section 4.1.2)

A quantity on which the measurand depends, taken into account in the process of evaluating the result of a measurement.

B13
measurand    ([ref. 2] term 2.6)

The particular quantity subject to measurement.

B14
output estimate (from [ref. 1] Section 4.1.4)


The result of a measurement calculated from the input estimates by the model function.

B15
output quantity (from [ref. 1] Section 4.1.2)

The quantity that represents the measurand in the evaluation of a measurement.

B16
pooled estimate of variance (from [ref. 1] Section 4.2.4)

An estimate of the experimental variance obtained from long series of observations of the same measurand in well-characterised measurements under statistical control.

B17
probability distribution ([ref. 3] term 1.3)

A function giving the probability that a random variable takes any given value or belongs to a given set of values

B18
random variable ([ref. 3] term 1.2)

A variable that may take any of the values of a specified set of values and with which is associated a probability distribution.

B19
relative standard uncertainty of measurement (from [ref. 1] Section 5.1.6)

The standard uncertainty of a quantity divided by the estimate of that quantity.

B20
sensitivity coefficient associated with an input estimate (from [ref.  1] Section 5.1.3)

The differential change in the output estimate generated by a differential change in an input estimate divided by the change in that input estimate.

B21
standard deviation (from [ref. 3] term 1.23)

The positive square root of the variance of a random variable.

B22
standard uncertainty of measurement ([ref. 1] term 2.3.1)

The uncertainty of measurement expressed as the standard deviation

B23
Type A evaluation method ([ref. 1] term 2.3.2)

The method of evaluation of uncertainty of measurement by the statistical analysis of series of observations

B24
Type B evaluation method ([ref. 1] term 2.3.3)

The method of evaluation of uncertainty of measurement by means other than the statistical analysis of series of observations.

B25
uncertainty of measurement ([ref. 2] term 3.9)

A parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand.

B26
variance (from [ref. 3] term 1.22)

The expectation of the square of the deviation of a random variable about its expectation.

Appendix C

Sources of uncertainty of measurement

C1
The uncertainty of the result of a measurement reflects the lack of complete knowledge of the value of the measurand. Complete knowledge requires an infinite amount of information. Phenomena that contribute to the uncertainty and thus to the fact that the result of a measurement cannot be characterised by a unique value, are called sources of uncertainty. In practice, there are many possible sources of uncertainty in a measurement [ref. 1], including: 

(a)
incomplete definition of the measurand; 

(b)
imperfect realisation of the definition of the measurand; 

(c)
non-representative sampling — the sample measured may not represent the defined measurand; 

(d)
inadequately known effects of environmental conditions or imperfect measurements of these; 

(e)
personal bias in reading analogue instruments;

(f)
finite instrument resolution or discrimination threshold;

(g)
inexact values of measurement standards and reference materials;

(h)
inexact values of constants and other parameters obtained from external sources and used in the data-reduction algorithm;

(i)
approximations and assumptions incorporated in the measurement method and procedure;

(j)
variations in repeated observations of the measurand under apparently identical conditions.

C2
These sources are not necessarily independent. Some of the sources (a) to (i) may contribute to (j). 

Appendix D

Correlated input quantities

D1
If two input quantities Xi and Xk are known to be correlated to some extent — i.e. if they are dependent on each other in one way or another — the covariance associated with the two estimates xi and xk



(D.1) 

has to be considered as an additional contribution to the uncertainty. The degree of correlation is characterised by the correlation coefficient r(xi, xk) (where i ( k and 

).

D2
In the case of n independent pairs of simultaneously repeated observations of two quantities P and Q the covariance associated with the arithmetic means 

 and 

 is given by




(D.2) 

and by substitution r can be calculated from equation (D.1). 

D3
For influence quantities any degree of correlation has to be based on experience. When there is correlation, equation (4.1) has to be replaced by




(D.3) 

where ci and ck are the sensitivity coefficients defined by equation (4.3) or




(D.4) 

with the contributions ui(y) to the standard uncertainty of the output estimate y resulting from the standard uncertainty of the input estimate xi given by equation (4.2). It should be noted that the second summation of terms in equation (D.3) or (D.4) may become negative in sign. 

D4
In practice, input quantities are often correlated because the same physical reference standard, measuring instrument, reference datum, or even measurement method having a significant uncertainty is used in the evaluation of their values. Without loss of generality, suppose that two input quantities X1 and X2 estimated by x1 and x2 depend on the set of independent variables Ql (l = 1,2,(,L) 




(D.5) 

although some of these variables may not necessarily appear in both functions. The estimates x1 and x2 of the input quantities will be correlated to some extent, even if the estimates ql (l = 1,2,…,L) are uncorrelated. In that case the covariance u(x1,x2) associated with the estimates x1 and x2 is given by




(D.6) 

where 

 and 

 are the sensitivity coefficients derived from the functions g1 and g2 in analogy to equation (4.3). Because only those terms contribute to the sum for which the sensitivity coefficients do not vanish, the covariance is zero if no variable is common to functions g1 and g2. The correlation coefficient r(x1,x2) associated with the estimates x1 and x2 is determined from equation (D.6) together with equation (D.1). 

D5
The following example demonstrates correlations which exist between values attributed to two artefact standards that are calibrated against the same reference standard. 

Measurement Problem
The two standards X1 and X2 are compared with the reference standard QS by means of a measuring system capable of determining a difference z in their values with an associated standard uncertainty u(z). The value qS of the reference standard is known with standard uncertainty u(qS).

Mathematical Model
The estimates x1 and x2 depend on the value qS of the reference standard and the observed differences z1 and z2 according to the relations




(D.7) 

Standard uncertainties and covariances
The estimates z1, z2 and qS are supposed to be uncorrelated because they have been determined in different measurements. The standard uncertainties are calculated from equation (4.4) and the covariance associated with the estimates x1 and x2 is calculated from equation (D.6), assuming that u(z1) = u(z2) = u(z),




(D.8) 

The correlation coefficient deduced from these results is




(D.9) 

Its value ranges from 0 to +1 depending on the ratio of the standard uncertainties u(qS) and u(z).

D6
The case described by equation (D.5) is an occasion where the inclusion of correlation in the evaluation of the standard uncertainty of the measurand can be avoided by a proper choice of the model function. Introducing directly the independent variables 

 by replacing the original variables X1 and X2 in the model function f in accordance with the transformation equations (D.5) gives a new model function that does not contain the correlated variables X1 and X2 any longer. 

D7
There are cases however, where correlation between two input quantities X1 and X2 cannot be avoided, e.g. using the same measuring instrument or the same reference standard when determining the input estimates x1 and x2 but where transformation equations to new independent variables are not available. If furthermore the degree of correlation is not exactly known it may be useful to assess the maximum influence this correlation can have by an upper bound estimate of the standard uncertainty of the measurand which in the case that other correlations have not to be taken into account takes the form




(D.10) 

with ur(y) being the contribution to the standard uncertainty of all the remaining input quantities assumed to be uncorrelated.
Note:
Equation (D.10) is easily generalised to cases of one or several groups with two or more correlated input quantities. In this case a respective worst case sum has to be introduced into equation (D.10) for each group of correlated quantities.
Annex E

Coverage factors derived from effective degrees of freedom.

E1
To estimate the value of a coverage factor k corresponding to a specified coverage probability requires that the reliability of the standard uncertainty u(y) of the output estimate 

 is taken into account. That means taking into account how well u(y) estimates the standard deviation associated with the result of the measurement. For an estimate of the standard deviation of a normal distribution, the degrees of freedom of this estimate, which depends on the size of the sample on which it is based, is a measure of the reliability. Similarly, a suitable measure of the reliability of the standard uncertainty associated with an output estimate is its effective degrees of freedom (eff ,which is approximated by an appropriate combination of the effective degrees of freedom of its different uncertainty contributions ui(y).

E2
The procedure for calculating an appropriate coverage factor k when the conditions of the Central Limit Theorem are met comprises the following three steps: 

(a)
Obtain the standard uncertainty associated with the output estimate according to the step by step procedure given in Section 7. 

(b)
Estimate the effective degrees of freedom (eff of the standard uncertainty u(y) associated with the output estimate y from the Welch-Satterthwaite formula



 ,
(E.1) 

where the ui(y) (i=1,2,(,N), defined in equation (4.2), are the contributions to the standard uncertainty associated with the output estimate y resulting from the standard uncertainty associated with the input estimate xi which are assumed to be mutually statistically independent, and (i is the effective degrees of freedom of the standard uncertainty contribution ui(y).

For a standard uncertainty u(q) obtained from a Type A evaluation as discussed in sub-section 3.1, the degrees of freedom are given by (i = n-1. It is more problematic to associate degrees of freedom with a standard uncertainty u(xi) obtained from a Type B evaluation. However, it is common practice to carry out such evaluations in a manner that ensures that any underestimation is avoided. If, for example, lower and upper limits a– and a+ are set, they are usually chosen in such a way that the probability of the quantity in question lying outside these limits is in fact extremely small. Under the assumption that this practice is followed, the degrees of freedom of the standard uncertainty u(xi) obtained from a Type B may be taken to be (i ( (.

(c)
Obtain the coverage factor k from the table of values given as Table E.1 of this annex. This table is based on a t-distribution evaluated for a coverage probability of 95,45%. If (eff is not an integer, which will usually be the case, truncate (eff to the next lower integer. 

Table E.1: Coverage factors k for different effective degrees of freedom (eff.
(eff 
1
2
3
4
5
6
7
8
10
20
50
(

k
13,97
4,53
3,31
2,87
2,65
2,52
2,43
2,37
2,28
2,13
2,05
2,00
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_843569119.unknown

_960969491.unknown

_960969499.unknown

_960969506

_961999435

_962000208.unknown

_960969503.unknown

_960969496

_960969498.unknown

_960969494

_888371344

_960969445.unknown

_960969468.unknown

_960969476.unknown

_960969466.unknown

_960969415.unknown

_960969430.unknown

_960969432.unknown

_960969426.unknown

_894096370.unknown

_960969411.unknown

_960969403.unknown

_889949810.unknown

_889950079.unknown

_888371927.unknown

_844504246.unknown

_856590258.unknown

_844075070.unknown

_844504245.unknown

_843057871.unknown

_843307585.unknown

_843307679.unknown

_843308845.unknown

_843058538

_843059053

_843305149

_843059002

_843057998

_843057039.unknown

_843057426

_843057749

_843056818

_843048057.unknown

